Short Reports

¹H NMR: δ 2.29 (3H, s), 2.52 (3H, s), 5.03 (1H, J = 3.3, 5.0 Hz, H-2), 3.44 (1H, dd) 3.34 (1H, dd) 6.89 (1H, d, J = 8 Hz) 7.81 (2H, m); MS m/z: 204 [M]⁺, 189, 161, 145, 118, 89, 63, 43 (100%).

Acknowledgement—This work was supported by the National Institute grant CA 25967.

REFERENCES

- Kupchan, S. M., Streelman, D. R., Jarvis, B. B., Dailey, R. G. Jr. and Sneden, A. T. (1977) J. Org. Chem. 42, 4221.
- 2. Tamn, D. (1974) Fortschr. Chem. Org. 31, 63.
- Jarvis, B. B., Eppley, R. M. and Mazzola, E. P. (1983) in Trichothecenes—Chemical, Biological and Toxicological Aspects (Ueno, Y., ed.) pp. 20-38. Kodansha Scientific, Tokyo.

- Boettner, F. E., Jarvis, B. B. and Pena, N. B. (1983) 186th National Meeting of the Am. Chem. Soc., Washington, DC, 29 August.
- 5. Gupta, A. S. and Dev, S. (1971) Tetrahedron 27, 635.
- Bonner, W. A., Burke, N. I., Fleck, W. E., Hill, R. K. L., Towle, J. A. and Sjöberg, B. (1964) Tetrahedron 20, 1419.
- Bohlmann, F., Scheidges, C., Zdero, C., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1109.
- Jarvis, B. B. (1984) in Toxigenic Fungi—Their Toxins and Health Hazard (Kurata, H. and Ueno, Y., eds) pp. 312-321.
 Kodansha Scientific, Tokyo.
- Nomura, M., Tokoroyama, T. and Kubota, T. (1981) Phytochemistry 20, 1097.
- San Martin, A., Rovorosa, J., Becker, R. and Castillo, M. (1980) Phytochemistry 19, 1985.

Phytochemistry, Vol. 25, No. 2, pp. 535-537, 1986. Printed in Great Britain.

0031-9422/86 \$3.00+0.00 © 1986 Pergamon Press Ltd.

SESQUITERPENE LACTONES FROM CENTAUREA CORONOPIFOLIA

SEVIL ÖKSÜZ and HATICE AYYILDIZ

Faculty of Pharmacy, University of Istanbul, Turkey

(Received 29 March 1985)

Key Word Index—Centaurea coronopifolia; Compositae; sesquiterpene lactones; germacranolides; flavonoids.

Abstract—The aerial parts of Centaurea coronopifolia afforded three new germacronolides, two of which are closely related to balsamin. The third is a new derivative of stizolicin, which is also present. The aerial parts also yielded four 6-methoxylated flavonoids and the triterpene, α -amyrin. The structures of the compounds were determined by spectroscopic methods.

INTRODUCTION

In the course of our investigation on the genus Centaurea [1-4], we have isolated four sesquiterpene lactones from the leaves of Centaurea coronopifolia Lam. Although one of the lactones, stizolicin, was isolated from C. coronopifolia [5] under the syn. Stizolophus coronopifolius, the other three are new: 1(10)en- 4α - 5β -epoxy- 9α -hydroxy germacranolides with 8α -(4-hydroxy senecioate) (2), 8α -senecioate (3) and 1(10)en- 4α , 5β -epoxy- 8α -(4-hydroxy senecioate) (4) side chains.

In addition, we also isolated the 6-methoxylated flavonoids 6-methoxyapigenin (6), 6-methoxyluteolin (7), quercetagetin 3,6-dimethyl ether (8) and quercetagetin 3,6dimethyl ether 7-O-glucoside (9). The last two flavonoids were isolated from a *Centaurea* species for the first time. The leaves also yielded large amounts of the well known triterpene, α -amyrin.

RESULTS AND DISCUSSION

Compound 2 had the molecular formula $C_{20}H_{26}O_7$ (EIMS). Its IR spectrum showed the presence of a γ -lactone (1745 and 1140 cm⁻¹), an α,β -unsaturated ester function (1705 and 1280 cm⁻¹) and hydroxyl groups (3400 cm⁻¹). Its structure was established by ¹H NMR spectroscopy.

The ¹H NMR spectrum of 2 (Table 1) contained doublets for an exocyclic methylene conjugated with a γ -lactone at $\delta 6.29$ and 5.76 ($^4J=3.5$, 3 Hz). A doublet at $\delta 2.62$ (J=9 Hz) for H-5 supported an epoxide group between C-4/C-5. This doublet collapsed to a singlet when the double doublet at $\delta 4.33$ (J=6.5, 9 Hz) (H-6) was irradiated and, in addition, the signal at $\delta 3.82$ (dddd, H-7) was simplified. However, irradiation of H-7 did not affect the double doublet at $\delta 2.62$ (H-5) but converted the double doublet at $\delta 4.33$ to a doublet (J=9 Hz), the

Table 1. ¹H NMR spectral data of compounds 1-4 (CHCl₃, TMS as int. standard)

Н	1*	2 †	2a*	3 †	4*
1	5.32 m	5.67 m	5.45 dm	5.62 m	5.30 m
2α	_	1.26 ddd	_	1.36 ddd	_
2β	_	2.52 dddd		2.52 dddd	_
3α		2.22 ddd		2.22 ddd	_
3β	_	2.32 m		2.35 m	_
5	2.65 d	2.62 d	2.62 d	2.62 d	2.65 d
6	4.34 dd	4.33 dd	4.40 dđ	4.35 dd	4.32 dd
7	3.31 m	3.82 dddd	3.70 dddd	3.81 dddd	3.25 dddd
8	4.58 m	4.57 d	4.55 s (br)	4.57 d	4.60 m
9	_	4.38 s (br)	5.20 s (br)	4.37 s (br)	
13a	5.70 d	5.67 d	5.56 d	5.66 d	5.75 d
13b	6.32 d	6.29 d	6.30 d	6.29 d	6.33 d
14	1.82 s	1.80 s	1.87 s	1.83 s	1.82 s
15	1.30 s	1.23 s	1.30 s	1.31 s	1.30 s
OCOR	6.99 t	6.02 sm	5.58 q	5.68 q	5.99 q
	4.35 s (br)	4.16 s (br)	4.52 s (br)	1.94 s	4.17 s (br)
	4.80 d	2.02 s	2.07 s	2.13 s	2.03 s
OAc			2.17 s		
			2.19 s		

^{*200} MHz.

^{†400} MHz.

J (Hz) 2, 2a, 3: 1, $2\beta = 7$; 2α , $2\beta = 13$; 2β , $3\alpha = 6$; 2β , $3\beta = 13$; 3α , $2\alpha = 1.5$; 3α , 3β

^{= 12; 6, 5 = 9; 6, 7 = 6.5; 7, 13}a = 3; 7, 13b = 3.5; 7, 8 = 4. J (Hz) 1 and 4: 5, 6 = 9; 6, 7 = 6; ester CH₂-O = 6.

Short Reports

doublets of the exocyclic methylene at $\delta 6.29$ and 5.76 to sharp singlets and the doublet at $\delta 4.57$ (J=4 Hz) to a broadened singlet, indicating that this signal must belong to H-8. The singlet (br) at $\delta 4.34$ and the multiplet at $\delta 5.67$ were assigned to H-9 which is adjacent to a hydroxyl group and the vinyl proton H-1 respectively. The protons of the ester side chain were accounted for by a one proton multiplet at $\delta 6.02$, a two proton singlet at $\delta 4.16$ and a three proton singlet at $\delta 2.02$. The chemical shifts of the multiplet and two proton singlet strongly suggested the presence of a 4-hydroxy senecioate moiety. This was confirmed by the presence in the mass spectrum of a base peak at m/2 99.

Acetylation of 2 (to form 2a) gave rise to two sharp methyl signals at $\delta 2.17$ and 2.19 and caused downfield shifts at $\delta 5.20$ and 4.52 for H-9 and CH₂OH in the side chain, respectively.

The upfield chemical shift of H-8 was explained by the report in the literature [6] that in C-6-trans-fused germacranolides with C-8 α -esters, H-8 β has a higher chemical shift than that of H-8 α .

The stereochemistry at C-5 and C-9 followed the observed coupling constants $(J_{5a,6\beta} = 9 \text{ Hz}; J_{8\beta,9a} = 3 \text{ Hz}; J_{8\beta,9\beta} = 0-1 \text{ Hz})$ when the Dreiding model was inspected.

Compound 3, $C_{20}H_{26}O_6$ (EIMS) exhibited IR absorption bands at 1740 and 1150 (γ -lactone), 3400 (hydroxyl), and 1708 and 1290 (ester) cm⁻¹. Its ¹H NMR spectrum (Table 1) exhibited the typical doublets of an exocyclic methylene at $\delta 6.29$ and 5.66 ($^4J = 3.5$, 3 Hz). The other signals were very similar to those of compound 2, except for the side chain signals which consisted of two vinylic methyl singlets at $\delta 1.94$ and 2.13 and a vinylic proton quartet $\delta 5.68$. On the basis of the chemical shift of the vinyl proton, the ester side chain must be senecioate. This was confirmed by the presence in the mass spectrum of a base peak at m/z 83. Compound 3 was identified as the 9α -hydroxy isomer of balsamin (5) which was isolated from Stizolophus balsamita [7].

Compound 4, $C_{20}H_{26}O_6$ (EIMS) gave rise to IR bands at 3440 (hydroxyl), 1750 and 1140 (γ -lactone), and 1715 and 1280 (ester) cm⁻¹. Its ¹H NMR spectrum (Table 1) had the characteristic signals of an α -methylen- γ -lactone at δ 5.75 and 6.33 ($^4J=3$, 3.5 Hz), a H-5 epoxy proton at δ 2.65 (d, J=9 Hz) and a 4-hydroxy senecioic group at δ 5.99 (m, vinylic proton), 2.03 (s, vinyl methyl) and 4.17 (s, CH₂OH). The presence of this ester group was confirmed by the base peak at m/z 99. The spectral data indicated that compound 4 is a new derivative of stizolicin (1).

EXPERIMENTAL

Mps uncorr. Plant material was collected from Polatli (near Ankara, Turkey) in July 1980. A voucher specimen (No. 45502) is deposited in the Herbarium of the Faculty of Pharmacy, Istanbul. Isolation and identification of compounds 1-4. Air-dried and powdered aerial parts (1 kg) of C. coronopifolia was extracted with CHCl₃ in a Soxhlet, after evapn in vacuo the extract (21 g) was subjected to CC over silica gel and eluted with CHCl₃ by gradual addition of MeOH.

537

Compound 1. Mp 141°, white crystals from MeOH (100 mg). IR $v_{\text{MR}}^{\text{KB}}$ cm⁻¹: 3400 (OH), 1760 and 1150 (γ -lactone), 1715 and 1276 (ester), 1649 (C=C), 840-800 (HC=CRR'). ¹H NMR: see Table 1. MS m/z (rel. int.): 378 [M] $^+$ C₂₀H₂₆O₇ (5), 360 [M $^-$ 18] $^+$ (10), 263 [M $^-$ C₅H₇O₃] $^+$ (8), 246 [M $^-$ C₅H₇O₄] $^+$ (25), 188 [C₁₂H₁₂O₂] $^+$ (92), 97 [C₅H₅O₂] $^+$ (100). UV $\lambda_{\text{max}}^{\text{MeOH}}$: 225 nm.

Compound 2. Mp 203°, white crystals from MeOH (20 mg). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 1745 and 1140 (γ -lactone), 1705 and 1280 (ester), 1645 (C=C), 840–800 (HC=CRR'). ¹H NMR see Table 1. MS m/z (rel. int.): 378 [M]⁺ C₂₀H₂₆O₇ (7), 279 [M -C₅H₇O₂]⁺ (8), 262 [M -C₅H₈O₃]⁺ (24), 115 [C₃H₇O₃]⁺ (10), 99 [C₅H₇O₂ -CO]⁺ (68). UV $\lambda_{\text{max}}^{\text{MeaN}}$: 227 nm. Diacetate of 2. A mixture of 2 (5 mg), C₅H₅N (1 ml) and Ac₂O (1 ml) was left at room temp. for 12 hr. ¹H NMR: see Table 1. MS m/z (rel. int.) 462 [M]⁺ C₂₄H₃₀O₉ (4), 378 [M -C₄H₄O₂]⁺ (6), 141 [C₇H₉O₃]⁺ (40), 99 [C₅H₇O₂]⁺ (100).

Compound 3. Mp 225°, white crystals from MeOH (13 mg). IR $\nu_{\text{MAY}}^{\text{KB}}$ cm⁻¹: 3400 (OH), 1740 and 1150 (γ -lactone), 1708 and 1290 (ester), 1645 (C=C), 850-818 (HC=CRR'). ¹NMR: see Table 1. MS m/z (rel. int.): 362 [M]⁺ C₂₀H₂₆O₆ (5), 279 [M - C₃H₇O]⁺ (23), 263 [M - C₃H₇O₂]⁺ (5), 244 [C₁₅H₁₈O₄ - H₂O]⁺ (12), 83 [C₃H₇O]⁺ (100), 55 [C₃H₇O - CO]⁺ (64). UV $\lambda_{\text{MSOH}}^{\text{MeOH}}$: 230 nm.

Compound 4. Oily (5 mg). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3440 (OH), 1750 and 1140 (γ-lactone), 1715 and 1280 (ester), 1655 (C=C). ¹H NMR see Table 1. MS m/z (rel. int.): 362 [M]⁺ C₂₀H₂₆O₆ (5), 264 [M - C₅H₆O₂]⁺ (5), 247 [M - C₅H₈O₃]⁺ (9), 99 [C₅H₇O₂]⁺ (100), 83 [C₅H₇O]⁺ (92). UV $\lambda_{\rm max}^{\rm meOH}$: 225 nm.

Acknowledgements—This study was supported by TUBITAK (Scientific and Technical Research Council of Turkey TBAG/579). The authors would like to thank to Prof. F. Bohlmann (Berlin) for 400 MHz NMR and Prof. T. J. Mabry (Austin-Texas) for 200 MHz NMR and mass spectra.

REFERENCES

- Öksüz, S., Ulubelen, A., Aynechi, Y. and Wagner, H. (1982) Phytochemistry 21, 2747.
- 2. Ulubelen, A. and Öksüz, S. (1982) J. Nat. Prod. 45, 373.
- 3. Öksüz, S. and Pütün, E. (1983) Phytochemistry 22, 2615.
- Öksüz, S., Ayyildiz, H. and Johansson, C. (1984) J. Nat. Prod. 47, 902.
- Mukhametzhanov, M. N., Sheichenko, V. I., Rybalko, K. S. and Pakaln, D. A. (1969) Khim. Prir. Soedin. 5, 125.
- Quijano, L. J. S., Calderon, F., Gomez, G. and Rios, T. C. (1979) Phytochemistry 18, 843.
- Rybalko, K. S., Mukhametzhanov, M. N., Sheichenko, V. I. and Konovalo, O. A. (1976) Khim. Prir. Soedin. 12, 467.